Non-isomorphism Invariant Borel Quantifiers

نویسندگان

  • FREDRIK ENGSTRÖM
  • PHILIPP SCHLICHT
چکیده

Every isomorphism invariant Borel subset of the space of structures on the natural numbers in a countable relational language is definable in Lω1ω by a theorem of Lopez-Escobar. We derive variants of this result for stabilizer subgroups of the symmetric group Sym(N) for families of relations and non-isomorphism invariant generalized quantifiers on the natural numbers such as “for all even numbers”. Moreover we produce a binary quantifier Q for every closed subgroup of Sym(N) such that the Borel sets of structures invariant under the subgroup action are exactly the sets of structures definable in Lω1ω(Q).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-permutation Invariant Borel Quantifiers

Every permutation invariant Borel subset of the space of countable structures is definable in Lω1ω by a theorem of Lopez-Escobar. We prove variants of this theorem relative to fixed relations and fixed non-permutation invariant quantifiers. Moreover we show that for every closed subgroup G of the symmetric group S∞, there is a closed binary quantifier Q such that the G-invariant subsets of the ...

متن کامل

The Quandry of Quandles: The Borel Completeness of a Knot Invariant

The isomorphism type of the knot quandle introduced by Joyce is a complete invariant of tame knots. Whether two quandles are isomorphic is in practice difficult to determine; we show that this question is provably hard: isomorphism of quandles is Borel complete. The class of tame knots, however, is trivial from the perspective of Borel reducibility, suggesting that equivalence of tame knots may...

متن کامل

The Borel Complexity of Isomorphism for O-Minimal Theories

Given a countable o-minimal theory T , we characterize the Borel complexity of isomorphism for countable models of T up to two model-theoretic invariants. If T admits a nonsimple type, then it is shown to be Borel complete by embedding the isomorphism problem for linear orders into the isomorphism problem for models of T . This is done by constructing models with specific linear orders in the t...

متن کامل

Isomorphism and Embedding of Borel Systems on Full Sets

A Borel system consists of a measurable automorphism of a standard Borel space. We consider Borel embeddings and isomorphisms between such systems modulo null sets, i.e. sets which have measure zero for every invariant probability measure. For every t > 0 we show that in this category there exists a unique free Borel system (Y, S) which is strictly t-universal in the sense that all invariant me...

متن کامل

The classification problem for von Neumann factors

We prove that it is not possible to classify separable von Neumann factors of types II1, II∞ or IIIλ, 0 ≤ λ ≤ 1, up to isomorphism by a Borel measurable assignment of “countable structures” as invariants. In particular the isomorphism relation of type II1 factors is not smooth. We also prove that the isomorphism relation for von Neumann II1 factors is analytic, but is not Borel.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010